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SUMMARY 
A new approach has been developed to calculate two-dimensional steady transonic flows past aerofoils using the 
Euler equations in streamfunction co-ordinates. Most existing transonic computation codes require the use of a 
grid generator to determine a suitable distribution of grid points. Although simple in concept, the grid generation 
may take a considerable proportion of the CPU time and storage requirements. However, this grid generation step 
can be avoided by introducing the von Mises transformation, which produces a formulation in streamwise and 
natural body-fitting co-ordinates. In this work a set of Euler equivalent equations in streamfunction co-ordinates is 
formulated, consisting of three equations with three unknowns; one is a geometric variable, the streamline ordinate 
y, and the other two are physical quantities, the density p and the vorticity w. To solve these equations, type- 
dependent differencing, development of a shock point operator, marching from a non-characteristic boundary and 
successive line overrelaxation are applied. Particular attention has been paid to the supercritical case where a 
careful treatment of the shock is essential. It is shown that the shock point operator is crucial to accurately capture 
shock waves. The computed results show excellent agreement with existing experimental data and other 
computations. 
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INTRODUCTION 

Transonic flow is a widely encountered phenomenon in aeronautics and astronautics, occuning in 
flows past aerofoils, wings, through nozzle throats, cascade blades or around blunt bodies, etc. 
Transonic flow is more difficult to solve compared with pure subsonic or supersonic flows, because the 
flow fields have mixed zones and shock waves. Owing to these difficulties, there was little progress in 
transonic computations until the early 1970s. Since then the numerical simulation of transonic flow has 
been an active research topic for computational fluid dynamicists working in applied mathematics and 
aeronautical and aerospace engineering. The earliest efforts on transonic computation used the 
transonic small-disturbance (TSD) equation14 and subsequently methods were developed for the fill 
potential During the last decade attention has tumed to the most accurate model for 
inviscid transonic computation, the Euler equations. Typical approaches include the implicit finite 
difference scheme," the implicit approximate factorization method,' the finite volume scheme with 
explicit Runge-Kutta time stepping,12 the flux-vector-splitting method,13 the multigrid s~heme , '~  the 
total-variation-diminishing schemeI5 and the finite element method. l6 

As an alternative to the above approaches, several researchers have replaced the primitive variable 
formulation of the Euler equations with a streamhction-vorticity formulation and have successfilly 
computed transonic flows."-22 
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In most CFD applications grid generation is a necessary first step in order to provide a body-fitting 
mesh system and this process may exhaust a considerable portion of CPU time. Hence the degree to 
which a numerical method can reduce this portion of time is an important index of its efficiency and 
applicability. Conventional numerical grid generation can be completely avoided by introducing the 
von Mises transformation and the corresponding streamfunction co-ordinates (SFCs). The von Mises 
transformation is a streamline-based co-ordinate transformation which analytically produces a body- 
fitting co-ordinate system. The transformation allows a single set of equations to play a double role, i.e. 
simultaneously serving as governing equations (flow physics) and grid generation equations (flow 
geometry). Therefore in recent years streamfunction (or streamline) co-ordinates have been exploited 
for the computation of 2D and axisymmetric incompressible potential  flow^,^^-^* incompressible 
viscous f l o ~ s ~ ~ - ~ '  and compressible potential Similar ideas have been used in 
turbomachinery analysis and design.4143 

In this study a technique is developed to calculate two-dimensional steady transonic flows past 
aerofoils using the Euler equations in streamfunction co-ordinates. Introducing the streamfunction and 
the von Mises transformation, a set of Euler equivalent equations in streamfunction co-ordinates is 
formulated. It consists of three coupled equations with three unknowns; one is a geometrical variable, 
the streamline ordinate y, and the other two are physical quantities, the density p and the vorticity w. To 
solve the "main equation' for y, which is a second-order partial differential equation, a type-dependent 
difference scheme is applied. To treat the embedded shock wave, the shock jump conditions are 
analysed and a shock point operator is constructed in streamfunction co-ordinates. In order to solve for 
the density p, researchers traditionally use the Bernoulli equation. In the transonic range, however, the 
classical double-density problem exists in the new streamfunction co-ordinate formulation. Even if the 
artificial density technique is applied, in conjunction with the use of upwind differencing in supersonic 
regions, the supersonic pocket and shock waves are still difficult to handle. This is perhaps because 
there is no obvious mechanism by which the artificial density can provide dissipation to the y-equation, 
in the sense explained by Jameson6 or Hafez el al? for the potential equation and by Habashi and 
Hafez17 or Hafez and Lovell18 for the streamfunction equation. To overcome this difficulty, instead of 
solving the algebraic Bernoulli equation, a first-order partial differential equation called the 'secondary 
equation' is solved to avoid the double-density problem. Once y and p are obtained, o can be easily 
calculated. 

In Section 2 the Euler equivalent equations are formulated in streamfunction co-ordinates. In Section 
3 the related numerical methodologies are discussed. Particular attention has been paid to the shock 
wave treatment, including the analysis of the shock jump conditions and the construction of the shock 
point operator (SPO). In Section 4 sample computations are conducted and the calculated results are 
compared with available experimental data and other computations. In the last section brief 
conclusions are given and the advantages and limitations of the present approach are discussed. 

MATHEMATICAL FORMULATION 

For a two-dimensional, steady, inviscid flow around an aerofoil the most accurate mathematical model 
is the Euler equations 
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where H = [y / (y  - l)lp/p+(u2 + v2)/2 is the total enthalpy per unit mass, p is the density, u and v are 
the velocity components in Cartesian co-ordinates (x, y),  p is the pressure and y is the ratio of specific 
heats. The dependent variables p, u, v and p have been normalized by the quantities at freestream 
condition: density p ,  , speed V, and dynamic pressure head pmVL. The independent variables x and y 
have been scaled by the aerofoil chord length. 

Introducing the streamfunction I) such that 

*y = PU, * x  = -PV, ( 2 )  
the continuity equation in (1) is automatically satisfied. The explicit form of the streamhnction 
t j  = $(x, y )  can be considered in an implicit form F(x, y ;  rl/) = 0 or in an alternative explicit form as 
y = y(x, $). This process is equivalent to the introduction of the von Mises transformationu 

x = x, Y = Y(X1 *I. (3) 
If the Jacobian J = d(z,  y)/d(z, +) = y$ # 0,  00, then the transformation (3) is one-to-one and the 
differential operators are transformed to 

Therefore the Euler equations in streamfunction co- ordinates become 

VPYll + PYll ( Y x p  ):(-r) = o ,  
ll 

where 

The co-ordinates (x, $) are referred to as the streamfunction co-ordinates ( S F C S ) ~ ~  and the Euler 
equations in streamfunction co-ordinates, (5 ) ,  are completely equivalent to the Euler equations in 
Cartesian co-ordinates, (l), as long as the von Mises transformation (3) is valid in the problem under 
consideration. In this new formulation there are three dependent variables: streamline ordinate y, 
density p and pressure p ;  as unknown functions of two independent variables: abscissa x and 
streamfunction II/. 

The last equation in (9, Hx = 0, means that the total enthalpy H is invariant along a streamline. 
However, for a flow with uniform freestream H is invariant along any line and hence H is a constant 
throughout the flow field. This is the so-called homoenergetic condition which is satisfied in most 
practical problems. The constant can be evaluated at freestream condition as 

Thus equations ( 5 )  can be rewritten as 

k + P Y l l ] ,  -[PYX]$ = 01 (7) 

k] +pll=O, 
X 
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Here the energy equation has been reduced to an algebraic equation for p ,  p and derivatives of y owing 
to the homoenergetic condition. The velocity components can be calculated from 

Y x  v = -  1 u = -  
PY* ’ PY* 

in streamfunction co-ordinates. 
Differentiating (9) with respect to x and I) and substituting px and p $  into (7) and (8) yields 

(12)  

Then, using the definition of vorticity (w = vX - u,) in streamfunction ~o-ordinates,~~ 

and eliminating px/p and p$ /p using (1 1) and (12), we get 

where 

are the terms representing compressibility and rotational effects respectively. Equation (14), which can 
be solved for y if p and w are known, is a second-order non-linear non-homogeneous partial 
differential equation. To classify this equation, one can show that its discriminant is 

A = 4$(M2 - 1)’  ( 1 5 )  

where M is the local Mach number. Thus we observe that if the local flow is supersonic (or subsonic), 
then the governing equation must be hyperbolic (or elliptic) and vice versa. Therefore the mathematical 
classification of the governing equation in streamfunction co-ordinates is consistent with the physical 
nature of the local flow. This feature provides the possibility of applying the type-dependent difference 
scheme originally proposed by Murman and Cole’ to numerically solve equation (14) for y. 

It is obvious that equation (14) for y is coupled with p and w through Z1 and Z2. Therefore, to solve 
equation (14) for y iteratively, p and w must be updated from iteration to iteration. The density can be 
updated from a first-order non-linear partial differential equation obtained by eliminating the term 

2 Y* Yzx - 2Yz Y7J YzQ + (1 + Y 2 ) Y N  from (13) and (141, 

YxY$Px -Y*(1 +Y%* = (ZlYrr +Z3)PI (16) 
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where 

79 

is the rotational term. The slope of the characteristic curve for this equation is 

At infinity yx -+ 0, YJI -+ 1 and hence d$/& -+ 00. Therefore the characteristic curve of (16) at 
infinity is a vertical line in the (x, $)-plane. 

After y is solved from (14) and p is updated from (16), the vorticity w can be updated from its 
definition (1 3). These equations constitute a complete set of ‘Euler equivalent equations’ in 
streamfunction co-ordinates. For convenience equation (14) is referred to as the ‘main equation’ for the 
corresponding ‘main variable’ y and the other equations are referred to as the “secondary equations’ for 
the related ’kecondary variables’ p and o. Having obtained y, p and w, the local Mach number can be 
obtained from 

and the pressure coefficient from 

where 

NUMERICAL METHODOLOGIES 

Suppose an aerofoil is placed in a two-dimensional air flow with freestream Mach number M,  at an 
angle of attack a. From the previous section the governing Euler equivalent equations in 
streamfunction co-ordinates are composed of (14), (16) and (13) 

b$ - Zl)Yu - 2YxY*Yx$ + (1 +Y%$$ = z2, (20) 

On the aerofoil the boundary condition for y is Dirichlet, 

y = f + W ,  
where f+(x) and f-(x) represent the shape functions of the upper and lower surfaces of the aerofoil 
respectively. In the far field the streamfinction can be expressed by the sum of a uniform flow, a 
doublet and a vortex.2o In most cases the doublet term is sufficiently small and can be ignored. 
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Therefore the boundary condition at infinity is given in an explicit form for I), 

r 
+ ( x y )  =ycoscr-xsincr+-ln[x? + ( I  - ~ 3 9 ] ,  

21K 

in the physical domain or in an implicit form for y, 

in the computational domain. This algebraic equation for y = y(x, $) is non-linear and an iteration 
algorithm (e.g. Newton’s iteration) must be applied. In addition, the Kutta condition must be satisfied, 
i.e. the pressures 

TE Y 

calculated from the upper and lower surfaces at the trailing edge must be equal to each other. Sketches 
of the physical and computational domains and the boundary conditions are shown in Figures 1 (a) and 
1 (b) respectively. 

Type-dependent scheme for the main equation 

Since the main equation (20) is well classified as hyperbolic- or elliptic-type depending on whether 
the local flow is supersonic or subsonic, it is possible to apply the type-dependent scheme to solve for 
y. Equation (20) can be rewritten as 

AlYXx+A2YX$ +A3Y$$ = A 4 ,  (26) 

where A, V and 6 are forward, backward and central difference quotient operators respectively, and the 
switch parameter 

v = {  1 for subsonic points, 
0 for supersonic points. 

In this formulation, upwinding in the x-direction at supersonic points has the effect of a rotated 
difference scheme, since the backward differencing is actually in the direction of the streamline. 

Expanding the type-dependent scheme (27) and rearranging the terms to express it in a tridiagonal 
coefficient matrix form, one gets 
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Figure l(a). Physical plane 
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Figure l(b). Computational plane 
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Figure 2(a). y-Equation sweeping 

where 

RHS=-vAl(Yi+lj+yi-lj) + ( 1  -v)A1(2yi-lj-yi-zj) 
- vPA2 (Yi+ I j+ I - yi+l j -  1 - yi- I j+ I + yi- I j- I )  /4 

+ ( 1  - v)BAzO.’~-I~+I  -yi-1j-1)/2 + @A4 

for i = 2, 3, . . . , Imax-l, j = 2, 3, . . . , Jmax-l and B = AxIA$. 
The computational domain is divided into four subdomains as shown in Figure 2(a) and each 

subdomain is swept sequentially by SLOR from left to right. The whole process should be iterated up 
to convergence owing to the non-linearity of the equation. 

Marching the secondary equation 

Since the secondary equation (21) has vertical characteristics in the far field, it can be solved by 
marching line-by-line from the horizontal far-field boundary, which is a non-characteristic curve at 
which p=l. In our case equation (21) can be marched to the aerofoil from lower and upper boundaries 
for lower and upper half-planes respectively (Figure 2@)). Equation (21) can be rewritten as 

Blpx  + B2P@ + B3p = 0, (30) 
where 

B1 =yxY$,  B2 = - Y d l  +$I l  B3 = - ( Z I Y ~  + -73). 

Applying the Cranl-Nicholson scheme to (30) at point (i,  j - f) for the lower half-plane, evaluating 
the density p at level j - f by the average at levels j and j - 1 and rearranging the equations in a 

t 

Figure 2(b) Density equation marching 
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tridiagonal form, one gets 
- 

Api - , , ,  + Bpi,, + Cpi+l , j  = WS, (31 )  

where 
- 
A = -B1, B = 4BB2 + 2 b B 3 ,  = Bl ,  

W S  = Blp;-l,j-1 + (4BB2 - 2hB3)p; j - l  - BlP;+l,j-l (32 )  - 

for i = 2, 3, . . . , Imax-l and j = 2, 3, . . . , J m d l .  Here .Imdl represents the streamline coinciding with 
the aerofoil surface. It should be noted that B1,  B2 and B3 are taken as the averages of the 
corresponding quantities a t j  and j - 1 . A similar expression holds for the upper half-plane. Along the 
zero streamline upstream and downstream of the aerofoil the density p should be evaluated by 
averaging the values from upper and lower half-planes after each iteration. At convergence these values 
will be the same. 

The system of difference equations (3 1) has a tridiagonal coefficient matrix and can be solved line- 
by-line horizontally using SLOR from the far- field boundaries to the aerofoil. An iterative procedure 
is used, because (30) is non-linear. It should also be pointed out that the second derivative y, in B3 
should be type-dependently differenced to keep consistency with the y-equation. After p is solved, the 
vorticity can be updated from (22) and the local Mach number can be calculated from (1 8). Finally, the 
Kutta condition requires that the pressures at the trailing edge calculated from the upper surface, pTfE 
and from the lower surface, p~~ must be equal to each other. That is, 

(AP)TE =P& -PTE = O ,  (33)  

where the pressures p$E are given by (25). If (23) is not satisfied, the circulation r around the aerofoil 
can be corrected from the expression 

r(n+ l )  = + p O ( ~ P ) T E ,  (34 )  

where the superscripts (n) and (n + 1) indicate the iteration levels and the relaxation parameter PO can 
be determined from numerical tests. The numerical solution process can be described as below. 

First, the tridiagonal system of algebraic equations (29) is solved for y along a vertical line. Each 
vertical line is then successively relaxed from left to right in each subdomain and the subdomains are 
swept in the order I, 11, 111 and I\! Each time after y is relaxed, the error between the current and 
previous iterations is checked for all grid points. If the error is less than the prescribed tolerance, the 
iterations are considered to be converged, otherwise the iterations are repeated until convergence. After 
y is converged, p can be solved from equation (3 1). The tridiagonal system of algebraic equations (3 1) 
is solved along a horizontal line and each horizontal line is marched upwards or downwards to the 
aerofoil. After p is converged, the Mach number M and vorticity w are calculated and the Kutta 
condition (33) is checked. If it is not satisfied, is updated using (34) and the procedure is repeated 
again up to convergence. The Mach number is used to distinguish the grid point type: subsonic, 
supersonic or shock wave. The computational flowchart is shown in Figure 3. 

Shock jump condition 

As might be expected, numerical tests indicated that the type-dependent scheme is effective only for 
subcritical flows and for supercritical flows with weak shock waves. For a supercritical flow with 
moderate or strong shock waves the computation either fails to converge or is forced to stop owing to 
inaccurate intermediate values of the unknowns y and p during the process of iteration. Occasionally 
the computation converges but gives inaccurate pressure distributions and incorrect shock wave 
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March: p 

n 

I Calculate: w ,  APTE I 

Figure 3. Computational flow chart 

positions. This means that the shock waves are not being properly handled. Therefore a special 
treatment of shock waves is necessary. In the early work of Murman and Cole’ the shock jump 
conditions are automatically incorporated in their scheme for the TSD equation. The sonic line and 
weak shock waves develop naturally during the course of iteration. No special shock wave treatment 
has been made in their computation. To improve this approach, Muman’ proposed the concept of 
shock point operator (SPO) for the TSD equation and was able to achieve an improved solution. 
Although Murman’s SPO cannot be applied here directly, the basic idea and analysis of the shock wave 
structure provide a useful hint for extension to more accurate models such as fill potential or Euler 
equations. 

Suppose an oblique shock wave makes an angle p with the x-axis. Let Vand c1 be the velocity and its 
angle with the x-axis, u and v be the x- and y-velocity components and V,, and V, be the normal and 
tangential velocity components to the shock. Superscripts ‘ T ’  represent upstream and downstream of 
the shock (Figure 4(a)). The tangential shock relation V,’ = y- gives 

v+ COS(P - c1’) = v- cos(b - K). 
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X 

Figure 4(a). Shock jump condition 

Expanding this equation and using the relations ut = V? cos a? and vt = Vt sin a* yields 

v+ - v- 
Uf - u- (35) = -K, 

where K = lltan /3 is the reciprocal of the shock wave slope. Similarly the normal shock relation 
p+V,' = p-Vn- gives 

p+u+ - p-u- 
p+v+ - p-v- 

= K .  

Equations (35) and (36) can be expressed in a compact form 

[v] + K[u] = 0 ,  [PUI - K[PVI = 0, (37) 

where [. . .] represents the jump of the corresponding quantities across the shock wave. Recalling that 
puy+ = 1 and v = y,u, the oblique shock jump conditions in streamfunction co-ordinates are 

For a shock wave which is perpendicular to the x-axis, /3 = d 2 ,  K = 0 and the shock jump conditions 
reduce to 

These are the normal shock jump conditions in streamfunction co-ordinates. 

Shock point operator 

For moderate transonic Mach number the shock wave is approximately normal and can therefore be 
assumed to be an infinitely thin discontinuity surface located at point (i- f, j )  and perpendicular to the 
x-axis (Figure 4(b)). The shock jump conditions (39) can be written as 

Y,' = PY;, Y$ =vJ,, (40) 

where 

p- 1 + KY - 1)/21(M2)- 
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j --yr,,-t:* :.;. [ X 

1-1 

1-2 i-1 I i* l 

Figure 4(b). Shock point operator 

is the density jump factor and can be evaluated from the Rankine-Hugoniot relation. The squared 
Mach number at point (i - 1 , j ) -  can be evaluated by extrapolation from the two upstream grid points 
(i - 1, j )  and (i - 2, j )  as 

( M 2 ) i l / 2 , j  = iM:-l,j - 

Thus the shock jump conditions (40) can be rewritten as 

where 

is the density jump factor on thejth streamline. Finally we construct the difference approximation toy, 
at a shock point i = is, i.e. the grid point just behind the shock, so that for is we have 

Similarly the cross-derivative can be approximated by 

1 (43 ) 
=- 4LA+ b i + l , j + l  -Yi+l,j-l +Yi,j+l -.?'ij-l - 3Yi-lj+l 

+3Yi-l,j-l +Yi-z,j+l - Y i - 2 , j - l ) .  

Equations (42) and (43) define the shock point operator in streamfunction co-ordinates. Numerical 
tests for both full potential4' and the present Euler calculations show that the first derivatives y x ,  p x ,  



TRANSONIC EULER COMPUTATION 87 

Table I 

M,2-1,J M?j Local flow type at (2,  j )  

<1 <I Subsonic point 
<1 > I  Sonic point 
>1 >I  Supersonic point 
>1 <I  Shock point 

etc. do not need special treatment across shock waves, although they do have jumps across the shock 
waves. 

Owing to the special treatment of the grid point at a shock wave, the type-dependent difference 
scheme (29) and the Crank-Nicolson scheme (31) must be revised. The system of difference equations 
for y is of the same form as (29), but the coefficients A,  B, C and the RHS term have to be modified to 

A = p A 3 -  2 
if i = is. 

(1 - v)BA2/2 if i # is, 
if i = is. = P2A3 + { 13A2/4 

-PA2bi+l,j+l -yi+l,j-l - 3 ~ i - l , j + 1  I +3J'-l,j-1 +yi-2,j+l - . ~ - 2 , j - 1 ) / 4  + @A4 if i = is, 

where 
Similar changes occur in the equation for p, i.e. (3 1). In particular, the second derivative y, in the 

expression for B3 should be approximated by the type-dependent difference with shock point operator. 
In order to determine the type of local flow at grid point (i, j), the Mach number at two adjacent grid 

points is checked, i.e. the current point (i, j) and the immediately upstream point (i - 1, j). The criteria 
are given in Table I. 

In computational practice the sonic points need not be distinguished, because there is no jump across 
the sonic line. However, the shock points must be identified carefully and this is a key step in 
supercritical transonic flow computation. 

= AxIA$, i = 2, 3 ,  . . . , Imax.l and j = 2,  3 ,  . . . , Jmax-l. 

SAMPLE COMPUTATIONS 

The Euler equivalent equations in streamfunction co-ordinates have been used to calculate transonic 
flows past aerofoils at subcritical and supercritical Mach numbers. The computations are executed for 
the set of equations (29) for y and (31) for p. The vorticity w is calculated from (22) using central 
differences for all x- and $-derivatives. The iteration involves three levels of loops. The internal loop is 
for the y-iteration, the intermediate loop is for p and the external iteration loop is for w and r. For 



88 

'i' 
C.-F. AN AND R. M. BARRON 

A ExpANAE 1979) - Pnaenl 
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Figure 5.  C, comparison: NACA 0012, a = 0", M, = 0.490 

subcritical and shock-free or weak shock supercritical flows, accurate solutions are obtained on a 
65 x 65 uniform mesh in the (x, $)-domain, which is truncated as -2 5 x 5 3, -2.5 5 1c, 5 2.5 with 
the aerofoil located between 0 and 1. For flows with moderate or strong shock waves, clustering 
 transformation^^^ are required to place a sufficient number of grid points on the aerofoil to accurately 
predict the locations and strengths of the shocks. 

Figures 5-10 show comparisons between the calculated results and experimental data or other 
computations. The experimental data are extracted from work at ONERA NAE (Canada)47 
and NASA (U.S.A).48 Figure 5 is the comparison of the C,-distribution for NACA 0012 for purely 
subsonic flow at Mach number M,  = 0.490 at zero angle of attack. Figure 6 is for NACA 0012 at 
M,  = 0.503 and c( = 6-05". Figure 7 gives the Cp-distribution for NACA 0012 at slightly supercritical 
Mach number M ,  = 0-756 and u = 0". These shock-free calculations, performed on a uniform grid, 
show excellent agreement between computed and experimental results. Figure 8 gives the results of a 
supercritical calculation on a clustered grid. This example shows that the computational method 
described here can be used to accurately capture shock waves. Figure 9 illustrates the Cp-distribution 
on a 6 %  biconvex aerofoil at M ,  = 0.909 and u = 0" and shows excellent agreement with 
experiments. Excellent agreement is also seen in Figure 10, where the present calculations carried out 
on a clustered grid are compared with earlier test case corn put at ion^^^ for Mm = 0.8 and u = 1.25'. 
Figures 11 and 12 show the Mach number and entropy contours respectively for the same test case of 
NACA 0012 at M ,  = 0.8 and u = 1.25". 

Figure 13 demonstrates the evolution of iterations and convergence process for a typical super- 
critical calculation on a clustered grid: NACA 0012, M, = 0.803 and tl = 0". The C,-distributions 

1.6 

0.76 

0 

A up V low.Exp.(ONERA 1979) - Pmeanl 

-1.6 4 ----I 

0 0.2 0.4 0.8 0.8 1 
X 

Figure 6. C, comparison: NACA 0012, a = 6.05", M, = 0503 
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Figure 10. C, comparison: NACA 0012, a = 1.25', M ,  = 0.800 
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Figure 1 1 .  Mach contour: NACA 0012, a = 1.25", M ,  = 0.8 

< L E  L, 97 

Figure 12. Total pressure contour: NACA 0012, a = 1.25", M ,  = 0.8 
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Figure 13. Evolution of iterations: NACA 0012, a = 0", M ,  = 0.803 
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on the aerofoil are plotted after the following numbers of iterations: 3 1, 103,25 1 and 528. These plots 
show that before 251 iterations the calculated flow field has no shock wave. After 251 iterations a 
shock wave is formed and pushed backwards, with the accuracy improving as the iteration proceeds. 
The solution converges afier 528 iterations and gives excellent results. 

Figure 14 shows the effect of type-dependent (TD) differencing and shock point operator (SPO) in a 
typical supercritical calculation: NACA 0012, M, = 0.803 and c( = 0". Curve (a) gives the result of 
central differencing with neither TD nor SPO. The Cp-distribution is totally unacceptable, completely 
missing the supercritical region and shock wave. Curve (b) shows the result of TD differencing only, 
without SPO. The Cp-distribution is inaccurate and the shock wave location is too far downstream. 
Curve (c) shows the result of TD differencing plus appropriate SPO, i.e. SPO is used in terms y, and 
yx$ only. The calculation gives an accurate C,-distribution and shock wave location. Curve (d) shows 
the result of TD differencing plus too much SPO, i.e. SPO is used not only in y ,  and y 4  but also in 
terms y, and px . The Cp-distribution is unacceptable again and a severe oscillation occurs in the shock 
wave region. Comparing these curves, one can conclude that the TD differencing plus the appropriate 
SPO is an effective scheme to calculate transonic flows and the SPO is a crucial tool to accurately 
capture the embedded shock waves. 

CONCLUSIONS 

The Euler equivalent equations in streamfunction co-ordinates consist of a main equation for the 
corresponding main (geometric) variable, the streamline ordinate y, and a secondary equation for the 
secondary (physical) variable, the density p, and an equation for the vorticity w. These three equations 
are coupled together and must be solved simultaneously or iteratively. 

The main equation for y is a second-order non-linear partial differential equation with Dirichlet 
boundary conditions. It is solved using type-dependent differencing plus a shock point operator. 
The shock point operator is a crucial numerical tool to accurately capture the embedded shock 
waves. 

The secondary equation for p is a first-order partial differential equation and is solved by marching 
vertically from far-field boundaries to the aerofoil. The Crank-Nicolson scheme is effective in solving 
this equation. 

The approach based on the Euler equivalent equations in streamfunction co- ordinates is able to 
simulate transonic flows past two-dimensional aerofoils. The embedded shock waves in supercritical 
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flows can be accurately captured in the process of iteration. The calculated results compare favourably 
with existing experimental data and other computations. 

APPENDIX: NOMENCLATURE 

C, pressure coefficient 
H total enthalpy 

Jacobian of a transformation 

local Mach number 
pressure 
velocity components in directions x and y respectively 
speed 
Cartesian co-ordinates 
streamfunction co-ordinates 

Man B 

Greek letters 
a angle of attack or velocity angle with x- axis 

AdA$ or shock wave angle with x-axis 
relaxation parameter for 

P 
B O  
Y ratio of specific heats 
r circulation 
P density jump factor 

P density 
V switch parameter 

* streamfunction 
vorticity w 

Subscripts 
i, j grid points 
LE, TE leading and trailing edges respectively 
x, y, $ partial derivatives 
00 freestream value 
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